Zum Beweis ihrer Vorstellung hatten Ralser und Co nun nach allen Regeln der Kunst und den neuesten Erkenntnissen einen Urozean mit allerlei Zutaten bei rund 70 Grad Celsius simuliert – und mit modernster Technik analysiert, was in ihrer neuen Variante des klassischen Miller-Experimentes biochemisch so passiert war. Das erstaunliche Ergebnis: Auch ganz ohne das Zutun moderner Enzyme laufen sehr komplizierte Stoffwechselketten wie etwa die Glykolyse ab. Die Glykolyse, eine Folge von zehn Reaktionen, ist ein Kernelement im Stoffwechsel des Lebens: Sie produziert ATP, die Energiemolekülwährung aller Zellen und Bausteine für andere Zellbestandteile. Eine modernen Zelle braucht allerlei speziell aufeinander abgestimmte Proteinwerkzeuge, um die Glykolyse ablaufen zu lassen. Und doch: Die Analysen zeigen, dass die Reaktionskette auch schlicht im warmen Urozean spontan hätte ablaufen können: Alle möglichen chemischen Zwischenstationen auf dem Abbauweg vom Ausgangsprodukt Glukose-6-Phosphat bis zum Endprodukt Pyruvat fanden die Forscher.

Und dies vor allem, so Zusatzexperimente, wenn Eisen als Katalysator mitmischt: Während in mit Zuckerphosphaten angeimpftem Wasser schon einige der Glykolyseprodukte entstehen, liefen im künstlichen erwärmten Urozean und der Gegenwart von Eisen(II) fast alle Reaktionen ab, die nötig sind. Demnach sei durchaus vorstellbar, dass zuerst ein „primordiales metabolisches Netzwerk“ – also eine ganze Reihe wesentlicher, ineinander greifender Stoffwechselprozesse – auf der frühen Erde existiert hat. Aus ihm speisten sich dann die Grundbausteine von Molekülen wie der RNA, die schließlich Informationsspeicher und Enzyme wurden.

Kritiker bleiben skeptisch. So müsse zum Beispiel geklärt werden, wie die Ausgangsstoffe der Glykolyse, die von Ralser und Co hergestellt und zugemischt wurden, auf der Urerde hätten entstehen können. Es sei zudem nötig, diese verschiedenen Ausgangsstoffe und Produkte in einem hochkonzentrierten Gemisch eng beieinander zu halten, damit am Ende alle Reaktionen auch ablaufen. Mit diesem Problem hatten auch vorher schon viele Theorien gekämpft: Man vermutete zum Beispiel, dass die ersten biochemisch relevanten Moleküle sich in Hydrothermalquellen, Schlammvulkanen, Eisklumpen oder Tonmineralen konzentriert haben könnten. Anders gesagt: Man hat noch keine Ahnung.

Viele Experten meinen deshalb auch, dass noch vor den Werkzeugen oder den Stoffwechselreaktionen ein Reaktionsraum existiert haben muss – eine Art Protozelle, in der „das Leben“ sich dann entwickeln konnte.
Quelle: Mol. Syst. Biol. 10: 725, 2014.